Flipover to bolster model robustness

Abstract: Flipover, an enhanced dropout technique, is introduced to improve the robustness of artificial neural networks. In contrast to dropout, which involves randomly removing certain neurons and their connections, flipover randomly selects neurons and reverts their outputs using a negative multiplier during training. This approach offers stronger regularization than conventional dropout, refining model performance by (1) mitigating overfitting, matching or even exceeding the efficacy of dropout; (2) amplifying robustness to noise; and (3) enhancing resilience against adversarial attacks. Extensive experiments across various neural networks affirm the effectiveness of flipover in deep learning.

Yuxuan Liang
Yuxuan Liang
Ph.D. Student in Biomedical Engineering

My research interests include medical physics, medical imaging, medical image analysis, deep learning, and network interpretability.